Fbae Logo
Home | | Support Us | Contact Us
Goals & Objectives Our Position False Propaganda Special Topics Important Publications Important Links Events news Biosafety
Fbae Header Home

ARCHIVES

 



MARCH 2009

 

 

 
Organic and GM - Why Not?
- Mark Tester, Science, Vol. 322, page 1190; Nov. 21, 2008


'Tomorrow's Table - Organic Farming, Genetics, and the Future of Food' by Pamela C. Ronald and Raoul W. Adamchak; Oxford University Press, New York, 2008. 226 pp. $29.95, £17.99. ISBN 9780195301755.

To increase harvests and efficiency. The authors propose that combining genetic engineering with organic farming offers the best path to sustainable food production.

The organic movement's opposition to genetically modified (GM) crops is causing it to miss an opportunity. Like agriculture across the planet, organic farming needs all the technological help it can get to be both sustainable and high-yielding. As with many recent innovations, GM technologies provide myriad possibilities for reducing the impacts of agriculture on the environment and the need for chemical inputs to maintain yield. But from the start, the organic movement rejected the use of GM crops. Genetic engineering is a technology, and like so many technologies, its benefits, costs, and risks depend on how it is used. A comparison with nuclear technology is not unfair: most of us benefit from medical applications of nuclear technologies, while many of us have major concerns with the large stockpiles of nuclear weapons that still threaten the planet. So, the risks of GM depend on the genes being put into the plants, not on the technology per se. Yet the numerous potential applications of GM to reduce chemical inputs to agriculture are flatly rejected by most organic farmers.

In Tomorrow's Table, we now have the positive aspects of both organic and GM approaches discussed logically and clearly. The delightfully constructive book was written by a talented wife-and-husband team: Pamela Ronald, a very successful plant geneticist at the University of California, Davis, and Raoul Adamchak, an organic farmer who teaches at the same university. The authors are eminently qualified to present authoritative descriptions of their respective disciplines, which they do in a readable and accurate manner. But the noteworthy aspect of the book is the way they then marry their separate fields to argue logically for the use of GM technologies to improve organic agriculture. As Gordon Conway (a former president of the Rockefeller Foundation) comments in his foreword, "The marriage is long overdue."

The authors describe the possibilities for GM to assist organic agriculture with examples drawn from their own and others' research. Pest control is a particular focus. Ronald was centrally involved in the genetic engineering of flooding tolerance in rice (1). She describes lucidly how this would enable farmers to flood a paddy field in which the rice has been established, thus killing the weeds that inevitably afflict the crop but not the rice itself. When the water is subsequently lowered, the rice has a head start on any weeds that eventually emerge, which provides a simple, cheap, and clearly organic method for weed control. How can the organic movement turn its back on such opportunities?

The false dichotomy that has been constructed between GM crops and organic farming can be illustrated with numerous similar examples. Another discussed by the authors is Bacillus thuringiensis (Bt) toxin, which has been successfully commercialized by Monsanto. These small insecticidal proteins, synthesized by widespread soil bacteria, can be applied in an almost unregulated way by organic farmers. This has been done for many decades. Yet when genetic engineering is used to place the gene encoding the Bt toxin in a plant's genome, the resulting GM plants are vilified by the very people willing to spray the product encoded by this same gene over otherwise similar plants. The organic movement's sustained rejection of this current application of GM appears increasingly illogical as evidence continues to accumulate that it does reduce pesticide use. In fact, this reduction is the principal reason farmers pay more for the biotech seeds-their lowered expenditures on pesticides are saving them money.

The authors marshal many additional examples to support their thesis that GM technologies and organic agriculture are quite compatible. Their discussion of these two topics exposes the complexity of the biological systems in which the issues surrounding them have to be addressed. This highlights the superficial nature of much of the GM debate, in which both sides make oversimplifications that support unnecessarily polarized standpoints. The biology is more complex. Unlike most protagonists, Ronald and Adamchak do not crudely lump together every GM crop as though they are all the same. That oversimplification blurs the issues (2, 3) to the detriment of fruitful consideration of topics that are increasingly important in a world in which we need to produce more food, fiber, and fuels in the face of global environmental change. In contrast, the authors calmly argue something that makes perfect sense to me, but their book will be controversial.

All proponents of organic agriculture, especially the noisier ones such as Prince Charles, should read Tomorrow's Table. Ronald and Adamchak's clear, rational approach is refreshing, and the balance they present is sorely needed in our increasingly polarized world. In addition, plant scientists-who have the privilege of greater knowledge than most in this area and who therefore have a responsibility to share their understanding with a wider audience-will find the book provides useful information and arguments to help them when doing their next "science in the pub" talk.

References: 1. K. Xu et al., Nature 442, 705 (2006).; 2. M. Tester, Nature 402, 575 (1999).; 3. M. Tester, New Phytol. 149, 9 (2001).